勒奈·笛卡尔(René Descartes,1596年3月31日于法国土伦省莱耳市-1650年2月11日逝于瑞典斯德哥尔摩),法国哲学家、数学家、物理学家。他对现代数学的发展做出了重要的贡献,因将几何坐标体系公式化而被认为是解析几何之父。他还是西方现代哲学思想的奠基人,他的哲学思想深深影响了之后的几代欧洲人,创立了“欧陆理性主义”(Continental Rationali**)哲学。
笛卡儿生平笛卡儿1596年3月31日生于法国土伦省莱耳市的一个贵族之家,笛卡儿的父亲是布列塔尼地方议会的议员,相当于现在的律师和法官。一岁时母亲去世,给笛卡儿留下了一笔遗产,为日后他从事自己喜爱的工作提供了可靠的经济保障。8岁时他进入一所耶稣会学校,在校学习8年,接受了传统的文化教育,读了古典文学、历史、神学、哲学、法学、医学、数学及其他自然科学。但他对所学的东西颇感失望。因为在他看来教科书中那些微妙的论证,其实不过是模棱两可甚至前后矛盾的理论,只能使他顿生怀疑而无从得到确凿的知识,惟一给他安慰的是数学。在结束学业时他暗下决心:不再死钻书本学问,而要向“世界这本大书”讨教,于是他决定避开战争,远离社交活动频繁的都市,寻找一处适于研究的环境。1628年,他从巴黎移居荷兰,开始了长达20年的潜心研究和写作生涯,先后发表了许多在数学和哲学上有重大影响的论著。在荷兰长达20年的时间里,他集中精力做了大量的研究工作,在1634年写了《论世界》,书中总结了他在哲学、数学和许多自然科学问题上的看法。1641年出版了《行而上学的沉思》,1644年又出版了《哲学原理》等。他的著作在生前就遭到教会指责,死后又被梵蒂冈教皇列为禁书,但这并没有阻止他的思想的传播。
笛卡儿不仅在哲学领域里开辟了一条新的道路,同时笛卡儿又是一勇于探索的科学家,在物理学、生理学等领域都有值得称道的创见,特别是在数学上他创立了解析几何,从而打开了近代数学的大门,在科学史上具有划时代的意义。
笛卡儿的主要数学成果集中在他的“几何学”中。当时,代数还是一门比较新的科学,几何学的思维还在数学家的头脑中占有统治地位。在笛卡儿之前,几何与代数是数学中两个不同的研究领域。笛卡儿站在方**的自然哲学的高度,认为希腊人的几何学过于依赖于图形,束缚了人的想象力。对于当时流行的代数学,他觉得它完全从属于法则和公式,不能成为一门改进智力的科学。因此他提出必须把几何与代数的优点结合起来,建立一种“真正的数学”。笛卡儿的思想核心是:把几何学的问题归结成代数形式的问题,用代数学的方法进行计算、证明,从而达到最终解决几何问题的目的。依照这种思想他创立了我们现在称之为的“解析几何学”。1637年,笛卡儿发表了《几何学》,创立了直角坐标系。他用平面上的一点到两条固定直线的距离来确定点的距离,用坐标来描述空间上的点。他进而又创立了解析几何学,表明了几何问题不仅可以归结成为代数形式,而且可以通过代数变换来实现发现几何性质,证明几何性质。解析几何的出现,改变了自古希腊以来代数和几何分离的趋向,把相互对立着的“数”与“形”统一了起来,使几何曲线与代数方程相结合。笛卡儿的这一天才创见,更为微积分的创立奠定了基础,从而开拓了变量数学的广阔领域。最为可贵的是,笛卡儿用运动的观点,把曲线看成点的运动的轨迹,不仅建立了点与实数的对应关系,而且把形(包括点、线、面)和“数”两个对立的对象统一起来,建立了曲线和方程的对应关系。这种对应关系的建立,不仅标志着函数概念的萌芽,而且标明变数进入了数学,使数学在思想方法上发生了伟大的转折--由常量数学进入变量数学的时期。正如恩格斯所说:“数学中的转折点是笛卡儿的变数。有了变数,运动进入了数学,有了变数,辨证法进入了数学,有了变数,微分和积分也就立刻成为必要了。笛卡儿的这些成就,为后来牛顿、莱布尼兹发现微积分,为一大批数学家的新发现开辟了道路。
笛卡儿在其他科学领域的成就同样累累硕果。笛卡儿靠着天才的直觉和严密的数学推理,在物理学方面做出了有益的贡献。从1619年读了开普勒的光学著作后,笛卡儿就一直关注着透镜理论;并从理论和实践两方面参与了对光的本质、反射与折射率以及磨制透镜的研究。他把光的理论视为整个知识体系中最重要的部分。笛卡儿坚信光是“即时”传播的,他在著作《论人》和《哲学原理》中,完整的阐发了关于光的本性的概念。他还从理论上推导了折射定律,与荷兰的斯涅耳共同分享发现光的折射定律的荣誉。他还对人眼进行光学分析,解释了视力失常的原因是晶状体变形,设计了矫正视力的透镜。在力学方面,他提出了宇宙间运动量总和是常数的观点,创造了运动量守恒定律,为能量守恒定律奠定了基础。他还指出,一个物体若不受外力作用,将沿直线匀速运动。
笛卡儿在其他的科学领域还有不少值得称道的创见。他发展了宇宙演化论,创立了漩涡说。他认为太阳的周围有巨大的漩涡,带动着行星不断运转。物质的质点处于统一的漩涡之中,在运动中分化出土、空气和火三种元素,土形成行星,火则形成太阳和恒星。笛卡儿的这一太阳起源的旋涡说,比康德的星云说早一个世纪,是17世纪中最有权威的宇宙论。他还提出了**反应说,为生理学做出了一定的贡献。
笛卡儿近代科学的始祖。笛卡儿是欧洲近代哲学的奠基人之一,黑格尔称他为“现代哲学之父”。他自成体系,熔唯物主义与唯心主义于一炉,在哲学史上产生了深远的影响。同时,他又是一位勇于探索的科学家,他所建立的解析几何在数学史上具有划时代的意义。笛卡儿堪称17世纪的欧洲哲学界和科学界最有影响的巨匠之一,被誉为“近代科学的始祖”。
1649年冬,笛卡儿应瑞典女王克里斯蒂安的邀请,来到了斯德哥尔摩,任宫廷哲学家,为瑞典女王授课。由于他身体孱弱,不能适应那里的气候,1650年初便患肺炎抱病不起,同年二月病逝。终年54岁。1799年法国大革命后,笛卡儿的骨灰被送到了法国历史博物馆。
笛卡儿的成就笛卡儿在科学上的贡献是多方面的。但他的哲学思想和方**,在其一生活动中则占有更重要的地位。他的哲学思想对后来的哲学和科学的发展,产生了极大的影响。
◆哲学方面:
笛卡儿强调科学的目的在于造福人类,使人成为自然界的主人和统治者。他反对经院哲学和神学,提出怀疑一切的“系统怀疑的方法”。但他还提出了“我思故我在”的原则,强调不能怀疑以思维为其属性的独立的精神实体的存在,并论证以广延为其属性的独立物质实体的存在。他认为上述两实体都是有限实体,把它们并列起来,这说明了在形而上学或本体论上,他是典型的二元论者。笛卡儿还企图证明无限实体,即上帝的存在。他认为上帝是有限实体的创造者和终极的原因。笛卡儿的认识论基本上是唯心主义的。他主张唯理论,把几何学的推理方法和演绎法应用于哲学上,认为清晰明白的概念就是真理,提出“天赋观念”。
笛卡儿的自然哲学观同亚里士多德的学说是完全对立的。他认为,所有物质的东西,都是为同一机械规律所支配的机器,甚至人体也是如此。同时他又认为,除了机械的世界外,还有一个精神世界存在,这种二元论的观点后来成了欧洲人的根本思想方法。
◆物理学方面
笛卡儿靠着天才的直觉和严密的数学推理,在物理学方面做出了有益的贡献。从1619年读了开普勒的光学著作后,笛卡儿就一直关注着透镜理论;并从理论和实践两方面参与了对光的本质、反射与折射率以及磨制透镜的研究。他把光的理论视为整个知识体系中最重要的部分。
笛卡儿运用他的坐标几何学从事光学研究,在《屈光学》中**次对折射定律提出了理论上的推证。他认为光是压力在以太中的传播,他从光的发射论的观点出发,用网球打在布面上的模型来计算光在两种媒质分界面上的反射、折射和全反射,从而首次在假定平行于界面的速度分量不变的条件下导出折射定律;不过他的假定条件是错误的,他的推证得出了光由光疏媒质进入光密媒质时速度增大的错误结论。他还对人眼进行光学分析,解释了视力失常的原因是晶状体变形,设计了矫正视力的透镜。
在力学上,笛卡儿发展了伽利略的运动相对性的思想,例如在《哲学原理》一书中,举出在航行中的海船上海员怀表的表轮这一类生动的例子,用以说明运动与静止需要选择参照物的道理。
笛卡儿在《哲学原理》第二章中以**和第二自然定律的形式比较完整地**次表述了惯性定律:只要物体开始运动,就将继续以同一速度并沿着同一直线方向运动,直到遇到某种外来原因造成的阻碍或偏离为止。这里他强调了伽利略没有明确表述的惯性运动的直线性。
在这一章中,他还**次明确地提出了动量守恒定律:物质和运动的总量永远保持不变。笛卡儿对碰撞和离心力等问题曾作过初步研究,给后来惠更斯的成功创造了条件。
◆天文学方面
笛卡儿把他的机械论观点应用到天体,发展了宇宙演化论,形成了他关于宇宙发生与构造的学说。他认为,从发展的观点来看而不只是从已有的形态来观察,对事物更易于理解。他创立了漩涡说。他认为太阳的周围有巨大的漩涡,带动着行星不断运转。物质的质点处于统一的漩涡之中,在运动中分化出土、空气和火三种元素,土形成行星,火则形成太阳和恒星。
他认为天体的运动来源于惯性和某种宇宙物质旋涡对天体的压力,在各种大小不同的旋涡的中心必有某一天体,以这种假说来解释天体间的相互作用。笛卡儿的太阳起源的以太旋涡模型**次依靠力学而不是神学,解释了天体、太阳、行星、卫星、彗星等的形成过程,比康德的星云说早一个世纪,是17世纪中最有权威的宇宙论。
笛卡儿的天体演化说、旋涡模型和近距作用观点,正如他的整个思想体系一样,一方面以丰富的物理思想和严密的科学方法为特色,起着反对经院哲学、启发科学思维、推动当时自然科学前进的作用,对许多自然科学家的思想产生深远的影响;而另一方面又经常停留在直观和定性阶段,不是从定量的实验事实出发,因而一些具体结论往往有很多缺陷,成为后来牛顿物理学的主要对立面,导致了广泛的争论
◆数学方面
笛卡儿最杰出的成就是在数学发展上创立了解析几何学。在笛卡儿时代,代数还是一个比较新的学科,几何学的思维还在数学家的头脑中占有统治地位。笛卡儿致力于代数和几何联系起来的研究,于1637年,在创立了坐标系后,成功地创立了解析几何学。他的这一成就为微积分的创立奠定了基础。解析几何直到现在仍是重要的数学方法之一。
解析几何的诞生文艺复兴使欧洲学者继承了古希腊的几何学,也接受了东方传入的代数学。利学技术的发展,使得用数学方法描述运动成为人们关心的中心问题。笛卡儿分析了几何学与代数学的优缺点,表示要去“寻求另外一种包含这两门科学的好处,而没有它们的缺点的方法”。
在《几何学》卷一中,他用平面上的一点到两条固定直线的距离来确定点的距离,用坐标来描述空间上的点。他进而创立了解析几何学,表明了几何问题不仅可以归结成为代数形式,而且可以通过代数变换来实现发现几何性质,证明几何性质。
笛卡儿把几何问题化成代数问题,提出了几何问题的统一作图法。为此,他引入了单位线段,以及线段的加、减、乘、除、开方等概念,从而把线段与数量联系起来,通过线段之间的关系,“找出两种方式表达同一个量,这将构成一个方程”,然后根据方程的解所表示的线段间的关系作图。
在卷二中,笛卡儿用这种新方法解决帕普斯问题时,在平面上以一条直线为基线,为它规定一个起点,又选定与之相交的另一条直线,它们分别相当于x轴、原点、y轴,构成一个斜坐标系。那么该平面上任一点的位置都可以用(x,y)惟一地确定。帕普斯问题就化成了一个含两个未知数的二次不定方程。笛卡儿指出,方程的次数与坐标系的选择无关,因此可以根据方程的次数将曲线分类。
《几何学》一书提出了解析几何学的主要思想和方法,标志着解析几何学的诞生。此后,人类进入变量数学阶段。
在卷三中,笛卡儿指出,方程可能有和它的次数一样多的根,还提出了著名的笛卡儿符号法则:方程正根的最多个数等于其系数变号的次数;其负根的最多个数(他称为假根)等于符号不变的次数。笛卡儿还改进了韦达创造的符号系统,用a,b,c,…表示已知量,用x,y,z,…表示未知量。
解析几何的出现,改变了自古希腊以来代数和几何分离的趋向,把相互对立着的“数”与“形”统一了起来,使几何曲线与代数方程相结合。笛卡儿的这一天才创见,更为微积分的创立奠定了基础,从而开拓了变量数学的广阔领域。
正如恩格斯所说:“数学中的转折点是笛卡儿的变数。有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分和积分也就立刻成为必要了。”
四、笛卡儿对后世的影响及对其的评价
笛卡儿在哲学上是二元论者,并把上帝看作造物主。但笛卡儿在自然科学范围内却是一个机械论者,这在当时是有进步意义的。
笛卡儿是欧洲近代哲学的奠基人之一,黑格尔称他为“现代哲学之父”。他自成体系,熔唯物主义与唯心主义于一炉,在哲学史上产生了深远的影响。
笛卡儿的方**对于后来物理学的发展有重要的影响。他在古代演绎方法的基础上创立了一种以数学为基础的演绎法:以唯理论为根据,从自明的直观公理出发,运用数学的逻辑演绎,推出结论。这种方法和培根所提倡的实验归纳法结合起来,经过惠更斯和牛顿等人的综合运用,成为物理学特别是理论物理学的重要方法。作为他的普遍方法的一个最成功的例子,是笛卡儿运用代数的方法的来解决几何问题,确立了坐标几何学即解析几何学的基础。
笛卡儿的方**中还有两点值得注意。**,他善于运用直观“模型”来说明物理现象。例如利用“网球”模型说明光的折射;用“盲人的手杖”来形象地比喻光信息沿物质作瞬时传输;用盛水的玻璃球来模拟并成功地解释了虹霓现象等。第二,他提倡运用假设和假说的方法,如宇宙结构论中的旋涡说。此外他还提出“普遍怀疑”原则。这一原则在当时的历史条件下对于反对教会统治、反对崇尚权威、提倡理性、提倡科学起过很大作用 。
笛卡儿堪称17世纪及其后的欧洲哲学界和科学界最有影响的巨匠之一,被誉为“近代科学的始祖”。