伽罗华简介简历(个人资料介绍)

伽罗华(Évariste Galois,公元1811年-公元1832年)是法国对函数论、方程式论和数论作出重要贡献的数学家,他的工作为群论(一个他引进的名词)奠定了基础。, 伽罗华 - 简介 伽罗华(Évariste Galois,公元1811年-公元1832年)是法国对函数论、方程式论和数论作出重要贡献的数学家,他的工作为群论(一个他引进的名词)奠定了基础;所有这些进展都源自他尚在校就读时欲证明五次多项式方程根数解(Solution by Radicals)的不可能性(其实当时已为阿贝尔(Abel)所证明,只不过伽罗华并不知道),和描述任意多项式方程可解性的一般条件的打算。虽然他已经发表了一些论文,但当他于1829年将论文送交法兰西科学院时,**次所交论文却被柯西(Cauchy)遗失了,第二次则被傅立叶(Fourier)所遗失;他还与埃科尔综合技术学院(école Polytechnique)的口试主考人发生顶撞而被拒绝给予一个职位。在父亲自*后,他放弃投身于数学生涯,注册担任辅导教师,结果因撰写反君主制的文章而被开除,且因信仰共和体制而两次下狱。他第三次送交科学院的论文亦为泊松(Poisson)所拒绝。伽罗华死于一次决斗,可能是被保皇派或警探所激怒而致,时年21岁。 他被公认为数学界两个最具浪漫主义色彩的人物之一。 伽罗华 - Galois小传: 1832年5月30日清晨,在巴黎的葛拉塞尔湖附近躺着一个昏迷的年轻人,过路的农民从*伤判断他是决斗后受了重伤,就把这个不知名的青年抬到医院。第二天早晨十点,这个可怜的年轻人离开了人世,数学史上最年轻、最富有创造性的头脑停止了思考。后来的一些著名数学家们说, 他的死使数学的发展被推迟了几十年,他就是伽罗华。 天才的童年 1811年10月25日,伽罗华出生于法国巴黎郊区拉赖因堡伽罗瓦街的第54号房屋内。现在这所房屋的正面有一块纪念牌,上面写着:“法国著名数学家埃瓦里斯特?伽罗瓦生于此,卒年20岁,1811~1832年”。纪念牌是小镇的居民为了对全世界学者迄今公认的、曾有特殊功绩的、卓越的数学家――伽罗瓦表示敬意,于1909年6月设置的。 伽罗瓦的双亲都受过良好的教育。在父母的熏陶下,伽罗瓦童年时代就表现出有才能、认真、热心等良好的品格。其父尼古拉?加布里埃尔?伽罗瓦参与政界活动属自由党人,是拿破仑的积极支持者。主持过供少年就学的学校,任该校校长。又担任拉赖因堡15年常任市长,深受市民的拥戴。伽罗瓦曾向同监的难友勒斯拜――法国著名的**家、化学家和医生说过:“父亲是他的一切”。可见父亲的**态度和当时法国的革命热潮对伽罗瓦的成长和处事有较大的影响。 伽罗瓦的母亲玛利亚?阿代累达?伽罗瓦曾积极参与儿子的启蒙教育。作为古代文化的热烈爱好者,她把从拉丁和希腊文学中汲取来的英勇典范介绍给她儿子。1848年发表在《皮托雷斯克画报》上有关伽罗瓦的传记中,特别谈到“伽罗瓦的**位教师是他的母亲,一个聪明兼有好教养的妇女,当他还在童稚时,她一直给他上课”。这就为伽罗瓦在中学阶段的学习和以后攀登数学高峰打下了坚实的基础。 1823年l0月伽罗瓦年满12岁时,离开了双亲,考入有名的路易?勒?格兰皇家中学。从他的老师们保存的有关他在中学生活的回忆录和笔记中,记载着伽罗瓦是位具有“杰出的才干”,“举止不凡”,但又“为人乖僻、古怪、过分多嘴”性格的人。我们认为这种性格说明他有个性,而且早已显露出强烈的求知欲的标志。 伽罗瓦在路易?勒?格兰皇家中学领奖学金,完全靠公费生活。在第四、第三和第二年级时他都是优等生,在希腊语作文总比赛中也获得好评,并且在1826年l0月转到修辞班学习。 但是第二学季一开始(伽罗瓦这时刚满15岁),由于教师们认为他的体格不够强壮,校长认为他的判断力还有待“成熟”,他不得不回到二年级。重修二年级,使伽罗瓦有机会毫无阻碍地被批准去上初级数学的补充课程。自此他把大部分时间和主要精力用来研究、探讨数学课本以外的高等数学。 伽罗华经常到图书馆阅读数学专著,特别对一些数学**,如勒让德的《几何原理》和拉格朗日的《代数方程的解法》、《解析函数论》、《微积分学教程》进行了认真分析和研究,但他并未失去对其他科目的兴趣。 因此,当1827年伽罗瓦回到修辞班时,他的全面发展甚至比他的数学的天分在同学之中更加出人头地了。但是他对其它科目的教科书的内容以及教师所采用的教学法之潦草马虎感到愤怒。所以有的教师认为他被数学的鬼魅迷住了心窍,有的教师用七个字“平静会使他激怒”来形容他的行为。 这时伽罗瓦已经熟悉欧拉、高斯、雅可比的著作,这更提高了他的信心,他认为他能够做到的,不会比这些大数学家们少。到了学年末,他不再去听任何专业课了,而在独立地准备参加取得升入综合技术学校资格的竞赛考试。结果尽管考试失败,但1828年10月,他仍然从中学初级数学班跳到里夏尔的数学专业班。 路易?勒?格兰中学的数学专业班教师里夏尔,在科学史上,他作为一个很有才华的教师使人追念。里夏尔不仅讲课风格优雅,而且善于发掘天才。他遗留下的笔记中记载着:“伽罗瓦只宜在数学的尖端领域中工作”,“他大大地超过了全体同学”。 里夏尔帮助伽罗瓦于1828年在法国**个专业数学杂志《纯粹与应用数学年报》三月号上,发表了他的**篇论文―《周期连分数一个定理的证明》,并说服伽罗瓦向科学院递送备忘录。1829年,伽罗瓦在他中学学年快要结束时,把他研究的初步结果的论文提交给法国科学院。 1829年,中学学年结束后,伽罗瓦刚满18岁,他在报考巴黎综合技术学校时,由于在口试中主考的教授比内和勒费布雷?德?富尔西对伽罗瓦阐述的见解不理解,居然嘲笑他。伽罗瓦在提及这次考试时,曾写道,他不得不听“主考人的狂笑声”。据说“由于被狂笑声所激怒”,他把黑板擦布扔到主考人头上,或是因为他拒绝回答有关关于对数这样的过于简单的问题,所以再次遭到落选,伽罗瓦仍然是一个非正式的预备生。 1829年7月2日,正当伽罗瓦准备入学考试时,他的父亲由于受不了天主教牧师的攻击、诽谤而自*了。这给了伽罗华很大的触动,他的思想开始倾向于共和主义。其后不久,伽罗华听从里夏尔的劝告决定进师范大学,这使他有可能继续深造,同时生活费用也有了着落。1829年10月25日伽罗华被作为预备生录取入学。 进入师范大学后的一年对伽罗瓦来说是最顺利的一年,1828年他的科学研究获得了初步成果。伽罗瓦写了几篇大文章,并提出自己的全部著作来应征科学院的数学特奖。但在这里,他又一次遭到了新挫折:伽罗瓦的手稿原来交给科学院常任秘书傅立叶,傅立叶收到手稿后不久就去世了。因而文章也被遗失了。这些著作的某些抄本落到数学杂志《费律萨克男爵通报》的杂志社手里,并在1830年的4月号和6月号上把它刊载了出来。 在师范大学学习的**年,伽罗瓦结认了奥古斯特?舍瓦利叶,舍瓦利叶直到伽罗瓦临终前一直是他的唯一亲近的朋友。1830年7月,伽罗瓦将满19岁。他在师范大学的**年功课行将结束。他这时写成的数学著作,已经使人有可能对他思想的独创性和敏锐性作出评价。 数学世界的顽强斗士 19世纪初,有一些数学问题一直困扰着当时的数学家们,而如何求解高次方程就是其中之一。 历史上人们很早就已经知道了一元一次和一元二次方程的求解方法。关于三次方程,我国在公元七世纪,也已经得到了一般的近似解法,这在唐朝数学家王孝通所编的《缉古算经》就有叙述。到了十三世纪,宋代数学家秦九韶在他所著的《数书九章》的“正负开方术”里,充分研究了数字高次方程的求正根法,也就是说,秦九韶那时候已得到了高次方程的一般解法。 在西方,直到十六世纪初的文艺复兴时期,才由意大利的数学家发现一元三次方程解的公式――卡当公式。 在数学史上,相传这个公式是意大利数学家塔塔里亚首先得到的,后来被米兰地区的数学家卡尔达诺(1501~1576)*到了这个三次方程的解的公式,并发表在自己的著作里。所以现在人们还是叫这个公式为卡尔达诺公式(或称卡当公式),其实,它应该叫塔塔里亚公式。 三次方程被解出来后,一般的四次方程很快就被意大利的费拉里(1522~1560)解出。这就很自然的促使数学家们继续努力寻求五次及五次以上的高次方程的解法。遗憾的是这个问题虽然耗费了许多数学家的时间和精力,但一直持续了长达三个多世纪,都没有解决。法国数学家拉格朗日更是称这一问题是在“向人类的智慧挑战”。 1770年,拉格朗日精心分析了二次、三次、四次方程根式解的结构之后,提出了方程的预解式概念,并且还进一步看出预解式和方程的各个根在排列置换下的形式不变性有关,这时他认识到求解一般五次方程的代数方法可能不存在。此后,挪威数学家阿贝尔利用置换群的理论,给出了高于四次的一般代数方程不存在代数解的证明。 伽罗瓦通过改进数学**拉格朗日的思想,即设法绕过拉氏预解式,但又从拉格朗日那里继承了问题转化的思想,即把预解式的构成同置换群联系起来的思想,并在阿贝尔研究的基础上,进一步发展了他的思想,把全部问题转化或归结为置换群及其子群结构的分析。 这个理论的大意是:每个方程对应于一个域,即含有方程全部根的域,称为这方程的伽罗华域,这个域对应一个群,即这个方程根的置换群,称为这方程的伽罗华群。伽罗华域的子域和伽罗华群的子群有一一对应关系;当且仅当一个方程的伽罗华群是可解群时,这方程是根式可解的。 1829年,伽罗华在他中学最后一年快要结束时,把关于群论初步研究结果的论文提交给法国科学院,科学院委托当时法国最杰出的数学家柯西作为这些论文的鉴定人。在1830年1月18日柯西曾计划对伽罗华的研究成果在科学院举行一次全面的意见听取会。他在一封信中写道:“今天我应当向科学院提交一份关于年轻的伽罗华的工作报告……但因病在家,我很遗憾未能出席今天的会议,希望你安排我参加下次会议,讨论已指明的议题。”然而,第二周当柯西向科学院宣读他自己的一篇论文时,并未介绍伽罗华的著作,这是一个非常微妙的“事故”。 1830年2月,伽罗华将他的研究成果比较详细地写成论文交上去了,以参加科学院的数学大奖评选,希望能够获奖。论文寄给当时科学院终身秘书傅立叶,但傅立叶在当年5月去世了,在他的遗物中未能发现伽罗华的手稿。就这样,伽罗华递交的两次数学论文都被遗失了。 1831年1月,伽罗华在寻求确定方程的可解性这个问题上,又得到一个结论,他写成论文提交给法国科学院。这篇论文是伽罗华关于群论的重要著作,当时负责审查的数学家泊阿松为理解这篇论文绞尽脑汁。传说泊阿松将这篇论文看了四个月,最后结论居然是“完全不能理解”。尽管借助于拉格朗日已证明的一个结果可以表明伽罗华所要证明的论断是正确的,但最后他还是建议科学院否定它。 对事业必胜的信念激励着年轻的伽罗华。虽然他的论文一再被丢失,得不到应有的支持,但他并没有灰心,他坚持他的科研成果,不仅一次又一次地想办法传播出去,还进一步向更广的领域探索。 天才的陨落 伽罗华诞生在拿破仑帝国时代,经历了波旁王朝的复辟时期,又赶上路易?腓力浦朝代初期,他是当时最先进的革命**集团――共和派的秘密组织“人民之友”的成员,并发誓:“如果为了唤起人民需要我死,我愿意牺牲自己的生命”。 伽罗瓦敢于对**上的动摇分子和两面派进行顽强的斗争,年轻热情的伽罗华对师范大学教育组织极为不满。由于他揭发了校长吉尼奥对法国七月革命**的两面派行为,被吉尼奥的忠实朋友,皇家国民教育委员会顾问库申起草报告,皇家国民教育委员会1831年1月8日批准立即将伽罗瓦开除出师范大学。 之后,他进一步积极参加**活动。1831年5月l0日,伽罗华以“企图暗*国王”的罪名被捕。在6月15日陪审法庭上,由于共和党人的律师窦本的努力,伽罗瓦被宣告无罪当场获释。七月,被**王朝视为危险分子的伽罗华在国庆节**时再次被抓,被关在圣佩拉吉监狱,在这里庆祝过他的20岁生日,渡过了他生命的最后一年的大部分时间。 在监狱中伽罗华一方面与官方进行不妥协的斗争,另一面他还抓紧时间刻苦钻研数学。尽管牢房里条件很差,生活艰苦,他仍能静下心来在数学王国里思考。 伽罗瓦在圣佩拉吉监狱中写成的研究报告中写道:“把数学运算归类,学会按照难易程度,而不是按照它们的外部特征加以分类,这就是我所理解的未来数学家的任务,这就是我所要走的道路。”请注意到“ 把数学运算归类”这句话,道出了他的理想、他的道路。毋庸置疑,这句话系指点目前所称的群论。由于其后好几代数学家的工作,最终才实现了伽罗瓦的理想。正是他的著作,标志着旧数学史的结束和新数学史的开始。 l832年3月16日伽罗华获释后不久,年轻气盛的伽罗华为了一个**,卷入了一场他所谓的“爱情与荣誉”的决斗。伽罗华非常清楚对手的*法很好,自己难以摆*死亡的命运,所以连夜给朋友写信,仓促地把自己生平的数学研究心得扼要写出,并附以论文手稿。 他不时的中断,在纸边空白处写上“我没有时间,我没有时间”,然后又接着写下一个极其潦草的大纲。他在天亮之前那最后几个小时写出的东西,为一个折磨了数学家们几个世纪的问题找到了真正的答案,并且开创了数学的一片新的天地。 伽罗华对自己的成果充满自信,他在给朋友舍瓦利叶的信中说:“我在分析方面做出了一些新发现。有些是关于方程论的;有些是关于整函数的……。公开请求雅可比或高斯,不是对这些定理的正确性,而是对这些定理的重要性发表意见。我希望将来有人发现,这些对于消除所有有关的混*是有益的。” 第二天上午,在决斗场上,伽罗华被打穿了肠子。死之前,他对在他身边哭泣的弟弟说:“不要哭,我需要足够的勇气在20岁的时候死去”。他被埋葬在公墓的普通壕沟内,所以今天他的坟墓已无踪迹可寻。他不朽的纪念碑就是他的著作,由两篇被拒绝的论文和他在死前那个不眠之夜写下的潦草手稿组成。 历史学家们曾争论过这场决斗是一个悲惨遭的爱情**的结局,还是出于**动机造成的,但无论是哪一种,一位世界上最杰出的数学家在他20岁时被*死了, 他研究数学才只有五年。 群论――跨越时代的创造 伽罗华死后,按照他的遗愿,舍瓦利叶把他的信发表在《百科评论》中。他的论文手稿过了十四年后,也就是1846年,才由法国数学家刘维尔领悟到这些演算中迸发出的天才思想,他花了几个月的时间试图解释它的意义。刘维尔最后将这些论文编辑发表在他的极有影响的《纯粹与应用数学杂志》上,并向数学界推荐。1870年法国数学家约当根据伽罗华的思想,写了《论置换与代数方程》一书,在这本书里伽罗华的思想得到了进一步的阐述。 伽罗华最主要的成就是提出了群的概念,并用群论彻底解决了根式求解代数方程的问题,而且由此发展了一整套关于群和域的理论,为了纪念他,人们称之为伽罗华理论。正是这套理论创立了抽象代数学,把代数学的研究推向了一个新的里程。正是这套理论为数学研究工作提供了新的数学工具―群论。它对数学分析、几何学的发展有很大影响,并标志着数学发展现代阶段的开始。 伽罗瓦非常彻底地把全部代数方程可解性问题,转化或归结为置换群及其子群结构分析的问题。这是伽罗瓦工作中的**个“突破”,他犹如划破黑夜长空的一颗瞬间即逝的彗星,开创了置换群论的研究,确立了代数方程的可解性理论,即后来称为的“伽罗瓦理论”,从而彻底解决了一般方程的根式解难题。 作为这个理论的推论,可以得出五次以上一般代数方程根式不可解,以及用圆规、直尺(无刻度的尺)三等分任意角和作倍立方体不可能等结论。 对伽罗华来说,他所提出并为之坚持的理论是一场对权威、对时代的挑战,他的“群”完全超越了当时数学界能理解的观念。也许正是由于年轻,他才敢于并能够以崭新的方式去思考,去描述他的数学世界。也正因如此,他才受到了冷遇。 在这里,我们后人感受到的是一种孤独与悲哀,一种来自智慧的孤独与悲哀。但是,历史的曲折并不能埋没真理的光辉。今天由伽罗华开始的群论,不仅对近代数学的各个方向,而且对物理学、化学的许多分支都产生了重大的影响。 历史学家们曾争论过这场决斗是一个悲惨遭的爱情**的结局,还是 出于**动机造成的,但无论是哪一种,一位世界上最杰出的数学家 在他20岁时被*死了,他研究数学才只有5年。 在分送伽罗华的论文之前,他的兄弟和奥古斯特。谢瓦利埃将它们重 写了一遍,目的是把那些解释整理清楚。伽罗瓦阐述他的思想时总是 急于求成,不够充分,这种习性无疑地由于他只有一个晚上的时间来 概要叙述他多年的研究而更为严重。虽然他们很尽职地将论文抄本送 交卡尔。高斯,卡尔。雅可比和其他一些人,但此后10多年,直到约 瑟夫。刘维尔在1846年得到一份之前,伽罗华的工作一直未得到承认。 刘维尔领悟到这些演算中迸发出的天才思想,他花了几个月的时间试图 解释它的意义。最后他将这些论文编辑发表在他的极有影响的《纯粹 与应用数学杂志》上。其他的数学家对此作出了迅速和巨大的反响, 因为事实上伽罗瓦已经对如何去寻找五次议程的解作了完整透彻的 叙述……这是十九世纪数学中由一位它的最悲惨遭的英雄创造的 一件杰作。 在对论文的介绍中,刘维尔对为什么这位年轻数学家会被他的长辈 们拒绝,以及他本人的努力怎样使伽罗瓦重新受到注意做了反思: 过分地追求简洁是导致这一缺憾的原因。人们在处理像纯粹代数这 样抽象和神秘的事物时,应该首先尽力避免这样做。事实上,当你 试图引寻读者远离习以为常的思路进入较为困惑的领域时,清晰性 是绝对必需的,就像笛卡尔说过的那样:“在讨论超前的问题时务必 空前地清晰。”伽罗华太不把这条箴言放在心上,而我们可以理解 这些杰出的数学家想必认为,通过他们审慎的忠告所表现的苛刻,设法使这 个充满才华但尚无经验的初出茅庐者转回到正确的轨道上来是合适的。 他们苛评的这位作者,在他们看来是勤奋和富有进取心的,他可以从他 们的忠告中获益。 但是现在一切都改变了,伽罗华再也回不来了!我们不要再过分地作无用 的批评,让我们把缺憾抛开,找一找有价值的东西…… 我的热心得到了好报。在填补了一些细小的缺陷后,我看出伽罗华用来证明 这个美妙的定理的方法是完全正确的,在那个瞬间,我体验到一种强烈 的愉悦。 附:伽罗华的遗书 我请求我的爱国同胞们,我的朋友们,不要指责我不是为我的国家而死。 我是作为一个不名誉的风**人和她的两个受*者的牺牲品而死的。我将在 可耻的诽谤中结束我的生命。噢!为什么要为这么微不足道的,这么可鄙的 事去死呢?我恳求苍天为我作证,只有武力和强迫才使我在我曾想方设法 避开的挑衅中倒下。 我亲爱的朋友: 我已经得到分析学方面的一些新发现…… 在我一生中,我常常敢于预言当时我还不十分有把握的一些命题。但是我在 这里写下的这一切已经清清楚楚地在我的脑海里一年多了,我不愿意使人怀疑 我宣布了自己未完全证明的定理。 请公开请求雅可比或高斯就这些定理的重要性(不是就定理的正确与否) …………………………………………………………………………………… 发表他们的看法。然后,我希望有人会发现将这一堆东西整理清楚会是 很有益处的一件事。 热烈地拥抱你 伽罗华 评:伽罗华的想法是有道理的,但事实这道理只是在探求新知时特别有用。 伽罗华的成就成为整个数学界的成就是一件远比伽罗华想象的更艰难更平常的过程。 圆周率破案 伽罗华,他只活了21岁就去世了。不过,他的生命虽然短暂,却对方程的理论作出了杰出的贡献。不但如此,关于他还有一个用圆周率破案的传奇。 这天,伽罗华得到了一个伤心的消息,他的一位老朋友普柏被人刺死了,家里的钱财被洗劫一空。而女看门人告诉伽罗华,警察在勘察现场的时候,看见鲁柏手里紧紧捏着半块没有吃完的苹果馅饼。女看门人认为,凶手一定就在这幢公寓里,因为出事前后,她一直在值班室,没有看见有人进出公寓。可是这座公寓共有四层楼,每层楼有15个房间,共居住着一百多人,这里面到底谁会是凶手呢? 伽罗华把女看门人提供的情况前前后后分析了一番:;鲁柏手里捏着半块馅饼,是不是想表达什么意思呢?伽罗华忽然想到:馅饼,英文里的读音是“派”,而"派"正好和表示圆周率的读音相同。而鲁柏身前酷爱数学,伽罗华知道,他经常把圆周率的近似值取成3.14来做计算。“派”――3.14,鲁柏会不会是用这种方法来提示人――*害他的凶手的房间毫正是314呢? 为了证实自己的怀疑,伽罗华问女看门人:“314号房间住的是谁?” “是米赛尔。”女看门人答道。 “这个人怎样?”伽罗华追问到。 “不怎样,又爱喝酒,又爱赌钱。” “他现在还在房间吗?”伽罗华追问得更急切了。 “不在了,他昨天就搬走了。” “搬走了?”伽罗华一呆,“不好,他跑了!” “你怀疑是他干的吗?”女看门人问。 “嗯,如果我没有猜错的话,他一定就是*害鲁柏的凶手!” 伽罗华向女看门人讲述了自己的推理过程,他们立刻把这些情况报告了警要求缉捕米赛尔。米赛尔很快被捉拿归案,经过审讯,他果然招认了他因见财起意*害鲁柏的全过程。就是这半块馅饼,让鲁柏在被害之际还提供了凶手的线索,并被伽罗华注意到,从而抓到了真凶。

原文链接:,转发请注明来源!