sinx泰勒展开式(sinx泰勒展开式拉格朗日余项)

泰勒展开式是什么意思

泰勒公式得名于英国数学家布鲁克·泰勒,他在1712年的一封信里首次叙述了这个公式。泰勒公式是为了研究复杂函数性质时经常使用的近似方法之一,也是函数微分学的一项重要应用内容。

常用泰勒展开式公式

常用泰勒展开式公式为:sinx=x-1/6x^3+o(x^3),arcsinx=x+1/6x^3+o(x^3),tanx=x+1/3x^3+o(x^3),arctanx=x-1/3x^3+o(x^3),ln(1+x)=x-1/2x^2+o(x^2),cosx=1-1/2x^2+o(x^2)。

sinx泰勒公式展开

sin x 可以如何 “ 展开 ”?写成式子就是:

最后以省略号结束,代表 “ 无穷 ”,需要求的就是 a0,a1,a2,…… 的值,准确地说就是通项公式。然后,我们就可以开始 “ 微分 ” 了,就是等式两边同时、不停地微分下去。左边的三角函数的微分,其实是四个一循环的:sin x ➜ cos x ➜ - sin x ➜ - cos x,再回到 sin x……我们也会注意到,凡是把右边微分后,**项(常数)就为 0 了,也就是可以直接忽略。

这样一来,等式左边在有规律地循环着,等式右边每次都减少一项。当然,x = 0 时等式也会成立,那将 x = 0 带入,将消去所有 x 指数大于 0 的项(都是 0 啊)。这样一来,就可以顺利求出 a0,a1,a2,……啦,sin 0、cos 0、- sin 0 和 - cos x 分别是 0、+1 、0、-1(显然的规律)。上面是微分的过程,下面是对于所有系数得到的等式。

最后,等式左边是四个一循环,可以从除以 4 的余数来考虑(分类);然后,等是右边可以用字母来代替,就是 k! × ak,这里 k! 代表阶乘。所以说,我们可以得到一个看上去漂亮的结果:

如果将系数数列 a 代入,那么偶数项都会消掉(系数为 0),只剩下一加一减的奇数项了。这就是泰勒展开(其实泰勒展开有好几个,这里只是 sin x 的泰勒展开):

根据导数表得:f(x)=sinx,f'(x)=cosx,f''(x)=-sinx,f'''(x)=-cosx,f⑷(x)=sinx……

于是得出了周期规律。分别算出f(0)=0,f'(0)=1,f''(x)=0,f'''(0)=-1,f⑷=0……

最后可得:sinx=x-x^3/3!+x^5/5!-x^7/7!+x^9/9!-……(这里就写成无穷级数的形式了。)

拓展资料:

在数学中,泰勒公式是一个用函数在某点的信息描述其附近取值的公式。如果函数足够光滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。泰勒公式还给出了这个多项式和实际的函数值之间的偏差。

泰勒公式(Taylor's formula)

带Peano余项的Taylor公式(

泰勒公式Maclaurin公式):可以反复利用L'Hospital法则来推导,

f(x)=f(x0)+f'(x0)/1!*(x-x0)+f''(x0)/2!*(x-x0)^2+…+f^(n) (x0)/n!(x-x0)^n+o((x-x0)^n)

泰勒中值定理(带拉格郎日余项的泰勒公式):若函数f(x)在含有x的开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于(x-x0)多项式和一个余项的和:

f(x)=f(x0)+f'(x0)*(x-x0)+f''(x0)/2!*(x-x0)^2,+f'''(x0)/3!*(x-x0)^3+……+f(n)(x0)/n!*(x-x0)^n+Rn(x)

其中Rn(x)=f(n+1)(ξ)/(n+1)!*(x-x0)^(n+1),这里ξ在x和x0之间,该余项称为拉格朗日型的余项。

(注:f(n)(x0)是f(x0)的n阶导数,不是f(n)与x0的相乘。)

使用Taylor公式的条件是:f(x)n阶可导。其中o((x-x0)^n)表示比无穷小(x-x0)^n更高阶的无穷小。

Taylor公式最典型的应用就是求任意函数的近似值。Taylor公式还可以求等价无穷小,证明不等式,求极限等y=sinx

y' = cosx

y'' = -sinx

y'''= -cosx

y'''' = sinx

sinx = y(0)+y'(0)x + y''(0)x^2/2 +y'''(0)x^3/3!+...

= x - x^3/6 +...

Sinx泰勒展开

我是这样理解的

书上设的是2m.说明最终的展开式有偶数项,也就是说,余项一定为奇数阶,注意,一定是啊~~~~

对于m=1时

f(x)=f'(0)+f'(0)x+f''(0)x+r2(x),四项

对于这个题目

楼主把植代入

sinx=0+x+0*x^2/2!+r2(x)

可能是因为其1阶展开也是sinx=0+x+r1(x)

所以,楼主在看到sinx=x时后当成下面的了吧.其实,书上求的是2阶的哦~~~~

由于所求近似为2阶.所以余项r2(x)为3阶的

所以,最后r3的时候,我觉得你把误差放小似乎有所不妥当

因为sinx=x产生的误差是x的高阶无穷小

而sinx=x+0产生的误差是x^2的高阶无穷小

后者精度较高...

你说的对根据导数表得:f(x)=sinx,f'(x)=cosx,f''(x)=-sinx,f'''(x)=-cosx,f⑷(x)=sinx……

于是得出了周期规律。分别算出f(0)=0,f'(0)=1,f''(x)=0,f'''(0)=-1,f⑷=0……

最后可得:sinx=x-x^3/3!+x^5/5!-x^7/7!+x^9/9!-……(这里就写成无穷级数的形式了。)

拓展资料:

在数学中,泰勒公式是一个用函数在某点的信息描述其附近取值的公式。如果函数足够光滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。泰勒公式还给出了这个多项式和实际的函数值之间的偏差。

泰勒公式(taylor's formula)

带peano余项的taylor公式(

泰勒公式maclaurin公式):可以反复利用l'hospital法则来推导,

f(x)=f(x0)+f'(x0)/1!*(x-x0)+f''(x0)/2!*(x-x0)^2+…+f^(n) (x0)/n!(x-x0)^n+o((x-x0)^n)

泰勒中值定理(带拉格郎日余项的泰勒公式):若函数f(x)在含有x的开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于(x-x0)多项式和一个余项的和:

f(x)=f(x0)+f'(x0)*(x-x0)+f''(x0)/2!*(x-x0)^2,+f'''(x0)/3!*(x-x0)^3+……+f(n)(x0)/n!*(x-x0)^n+rn(x)

其中rn(x)=f(n+1)(ξ)/(n+1)!*(x-x0)^(n+1),这里ξ在x和x0之间,该余项称为拉格朗日型的余项。

(注:f(n)(x0)是f(x0)的n阶导数,不是f(n)与x0的相乘。)

使用taylor公式的条件是:f(x)n阶可导。其中o((x-x0)^n)表示比无穷小(x-x0)^n更高阶的无穷小。

taylor公式最典型的应用就是求任意函数的近似值。taylor公式还可以求等价无穷小,证明不等式,求极限等

原文链接:,转发请注明来源!