首先复习以前学过的图形,根据已有的知识,让学生认识新的图形,并把现在需要学习的新图形,分解成已经学过的图形,并根据已经学赤的图形公式推导出现在的图形。
使学生体会知识之间的结构关系,感受数学的整体性。在小学数学中很多知识表面看起来毫不相干,其实它们之间存在着千丝万缕的关系,把它们联系在一起的就是“数学思想与方法”。融人了思维导图的教学让学生从散杂、片断的机械式学习提升为注重关系并充满主动探究活力的有意义学习。
如在教学《平面图形的周长和面积》一课时,这部分内容涉及的概念很多,如周长、面积以及六种平面图形的周长和面积计算公式等。如何给学生讲述这些概念?怎样让学生达到对知识的意义建构?怎样获得学生对这些内容掌握情况的反馈信息?教师通过引导学生讨论复习内容,明确了复习的任务:(1)平面图形的周长和面积表示的意义?(2)小学阶段学习过哪些平面图形?(3)平面图形的周长计算公式?
(4)平面图形的面积计算公式?请将以上内容整理成思维导图,并且能让人一眼就看出平面图形面积计算之间的联系。
1、引导学生利用思维导图进行知识加工和整理;
2、引导学生利用思维导图进行知识表达和合作学习。
思维导图是用来组织和表征知识的工具,它通常将某一主题的有关概念置于圆圈或方框之中,然后用连线将相关的概念和命题连接,连线上标明两个概念之间的意义关系。思维导图能够构造清晰的知识网络,便于学习者对整个知识结构的掌握,有利于发散思维的形成,促进知识的迁移。美国康奈尔大学诺瓦克(j.d.novak)博士根据奥苏贝尔(david p.ausubel)的有意义学习理论在20世纪60年代最早提出了思维导图这一概念,并将思维导图运用到教学中,取得了较好的效果。思维导图的研究在国外已经比较成熟、丰富,研究内容涉及思维导图的内涵、结构和特征、分类及其编制过程、评价标准等诸多方面。我国目前还处于介绍引进阶段,小学数学教育对思维导图的专题研究还不多见,中文版的思维导图软件较少,本文将从思维导图的内涵,思维导图在小学数学教学中的应用以及制图的策略、应用的注意事项几方面做初步探究。
一、思维导图的定义
思维导图是用来组织和表征知识的工具,它通常将某一主题的有关概念置于圆圈或方框之中,然后用连线将相关的概念和命题连接,连线上标明两个概念之间的意义关系。思维导图能够构造清晰的知识网络,便于学习者对整个知识结构的掌握,有利于发散思维的形成,促进知识的迁移。
二、思维导图在小学数学中的应用
(一)教学设计的工具
思维导图为教师进行教学设计提供了支持与帮助,通过思维导图教师能够更清晰地呈现知识的框架结构,更加有条理地进行教学。教师可以运用思维导图对教学内容进行归纳和整理,突出教学重点、难点,将教学的主要概念和原理以一种可视化的方式展现出来,简明扼要地表达概念的逻辑关系,呈现概念的地位以及相关性,以便学生发现概念间的区别与联系,从而,提高课堂教学效率。
(二)创造思维的工具
制作思维导图的过程其实就是学生进行创造的过程,学生拥有较为宽泛的想象空间,可以根据自己的爱好设计符合条件的思维导图。在思维导图的制作过程中,学生要进行大量的思考,会在头脑中萌发各种新的想法,且学生在构建成自己的思维导图之后与他人的作品比较时还会有新的想法出现。有利于培养学生的创新精神和实践能力。
例如,学生在学习过五年级上册小数这一节内容时,通过与同学交流构建出这样一个思维导图。
(三)知识整合的工具
新课程标准要求在小学数学教学中要注重联系实际,提高对数学整体的认识,使学生体会知识之间的结构关系,感受数学的整体性。在小学数学中很多知识表面看起来毫不相干,其实它们之间存在着千丝万缕的关系,把它们联系在一起的就是“数学思想与方法”。融人了思维导图的教学让学生从散杂、片断的机械式学习提升为注重关系并充满主动探究活力的有意义学习。
如在教学《平面图形的周长和面积》一课时,这部分内容涉及的概念很多,如周长、面积以及六种平面图形的周长和面积计算公式等。如何给学生讲述这些概念?怎样让学生达到对知识的意义建构?怎样获得学生对这些内容掌握情况的反馈信息?教师通过引导学生讨论复习内容,明确了复习的任务:(1)平面图形的周长和面积表示的意义?(2)小学阶段学习过哪些平面图形?(3)平面图形的周长计算公式? (4)平面图形的面积计算公式?请将以上内容整理成思维导图,并且能让人一眼就看出平面图形面积计算之间的联系。
(四)教学反思的工具
思维导图有助于师生对教学活动效果进行反思。学生通过制作思维导图可以发现自己在知识掌握方面存在的问题。比如,所学重点概念理解的是否透彻,知识的掌握程度等,从而,及时有效的对知识上的欠缺予以修正和补充,不断完善自己的知识结构,增强学习的自我导向性,进而使学生自我反思能力和元认知水平能力得到提高。同时,在师生共同绘制与修正思维导图的过程中,教师可以及时发现学生知识掌握的不足之处,反思教学过程,发现教学的薄弱环节,为教学的改进提供客观依据,学生也能及时发现自己存在的问题,可见思维导图的绘制有利于师生的共同发展。
三、制作思维导图的策略
如何让学生掌握思维导图的制作策略呢?我认为,让学生掌握思维导图这一学习策略,需经历“识图—制图—用图”三个阶段[。
(一)识图——了解思维导图
思维导图对大部分小学生来说并不陌生,见到时有种熟悉的感觉。大量实践表明,首先需要让学生认识思维导图,了解思维导图的作用,能够看懂思维导图,从而产生学习制作思维导图的兴趣。例如,在复习整、小数的概念时,利用多媒体技术,制作了网络课件,以整、小数知识思维导图为基点,采用星形链接实现交互,让学生依托思维导图自主复习。。
(二)制图——逐步形成概念图
制图,是一个比较高的要求,难度也比较大。制作一个完整且合理的思维导图,除了要让学生掌握基本的制图方法外,更重要的是要引导学生探究发现各概念之间的内在联系,以及概念之间的逻辑关系和层级关系。
指导学生制作思维导图的步骤:①指导学生阅读课本,找出概念。②让学生将概念写于一张张小纸片上。③引导学生分析各概念间的关系并确定各纸片摆放的位置。④将步骤3中概念间的位置关系搬移到纸上。⑤用线段或箭头连接各概念。⑥逐一分析线段两端概念间的关系并用适当的语义词注于线段或箭头上(注释内容要简单、明了)。⑦教师引导学生进行合作,分析思维导图,优化完善思维导图并做评价。
(三)用图——灵活运用概念图
经过调查发现,在学习中使用思维导图的学生,在较长一段时间以后,其知识的保持时间比用死记硬背学习的学生时间要长,且知识面也比用死记硬背来学习的学生宽,且更能解决实际问题。
1.引导学生利用思维导图进行知识加工和整理
思维导图,就是将多个零散的知识按其内在的联系联合在一起的,绘制思维导图,就是将这种内在的联系用思维导图的形式清晰的表示出来。学生对知识进行有效的加工整理,可使知识结构更清晰。
2.引导学生利用思维导图进行知识表达和合作学习
可以让学生对自己的思维导图进行解释,说说思维导图中各个概念的具体含义及各概念间的关系,以加深对概念的理解,还可以让学生分组讨论交流自己制作的思维导图。
3.引导学生利用思维导图进行评价和自我评价
从学生制作的思维导图中,教师可以准确把握学生的对概念的理解水平。在利用思维导图进行交流的过程中,学生不仅可以对同学制作的思维导图进行评价,帮助同学发现问题,而且能发现自己概念理解上的不足,进行自我评价,从而完善自己的知识结构。
在整个“识图—制图—用图”过程中,学生积极主动参与,体验成功的喜悦,与同伴交流,在比较中自觉矫正思维偏差,不断完善认知结构,提升数学素养,促进认知飞跃,创新能力及发散思维能力有了很大的提高。
四、运用思维导图要注意的事项
(一)“严谨”不等于“束缚”
制图严谨,就是制作概念图时,形式上要满足思维导图的结构特征,内容上要准确、简单.从某种意义上说,任何概念之间都有联系,所以一定要精选出要连接的概念并认真考虑连接词.严谨性是数学学科的最大特点,力求用词准确与精练。
制图严谨并不意味要束缚学生的思维,运用思维导图教学是培养学生发散思维的过程,但是如果在制图过程中过于程序化、教条化则会适得其反。要让学生达到对所学知识的意义建构。
(二)“自主”不等于“放任”
自主,就是学生根据自己对所学知识的理解,经过独立思考建立的思维导图。因为个体差异的存在,学生对思维导图的理解、制作必然也不相同。思维导图是促进学生自主学习的一个工具,但学生自主运用思维导图并不等于教师放任自流,让学生自己绝对独立地随意完成,特别是中低年级学生,教师要进行积极的引导并且要对学生的思维导图作业予以评价,引导他们构建更好的思维导图。
五、结束语
思维导图作为“教”的策略,能有效地改变学生的认知方式,切实提高教学效果。作为“学”的策略,能促进学生的有意义学习、合作学习和创造性学习,培养学生的发散思维,最终使学生学会学习。
因此,小学教师在运用思维导图进行教学的过程中应充分发挥思维导图教学策略的优势,最大限度地优化教学,提高教学质量和教学效果,使思维导图成为促进学生学会学习的有效工具。思维导图,又叫心智图,是表达发射性思维的有效的图形思维工具。思维导图运用图文并重的技巧,把各级主题的关系用相互隶属与相关的层级图表现出来,把主题关键词与图像、颜色等建立记忆链接,能准确地、清晰地表达我们的思维。“思维导图”利用文字、符号、图画等载体把知识网络、章节结构等勾画出来,既能准确、清晰地表达我们的思维,又能组织概念,勾勒知识结构图,把它应用到小学数学学教学中,有利于教师进行教学设计、组织教学;也有利于学生整理学习笔记、整理自己的知识体系、完善小组探究过程等。在数学单元复习时用思维导图的形式来整理,使重点准确把握,难点突破,思路清晰,知识点不会忘掉,有好处。
长方体和正方体的思维导图怎么画?长方体的思维导图:
1、长方体有6个面,每个面都是长方形,也可能相对的两个面是正方形;
2、长方体有12条棱,相对的棱长度相等;
3、长方体有8个顶点。
正方体是长方体的特殊形式,当长方体的长、宽、高相等时即为正方体。
正方体的思维导图:
1、有3个面(只从一个角度看),每个面面积相等,形状完全相同;
2、有4个顶点(只从一个角度看);
3、有6条棱,(只从一个角度看)每条棱长度相等。
扩展资料:
长方形的常见判定方法:
1. 有一个角是直角的平行四边形是矩形。(定义)
2.对角线相等的平行四边形是矩形。
3. 邻边互相垂直的平行四边形是矩形。
4. 有三个角是直角的四边形是矩形。
5. 对角线相等且互相平分的四边形是矩形。
6. (通过平行四边形) ①在平行四边形ABCD中: ∠BAD=90°或BD=AC ∴平行四边形ABCD为矩形。
7. (通过四边形) ③在四边形ABCD中: ∠ABC=∠BCD=∠CDA=90°,∴四边形ABCD为矩形。
正方形判定定理
1、对角线相等的菱形是正方形。
2、有一个角为直角的菱形是正方形。
3、对角线互相垂直的矩形是正方形。
4、一组邻边相等的矩形是正方形。
5、一组邻边相等且有一个角是直角的平行四边形是正方形。
6、对角线互相垂直且相等的平行四边形是正方形。
参考资料来源:搜狗百科--正方形
参考资料来源:搜狗百科--长方形相当于画一个长方体正方体的知识点整理图,如下图所示:
长方体的特征:
1、长方体有6个面,每个面都是长方形,也可能相对的两个面是正方形;
2、长方体有12条棱,相对的棱长度相等;
3、长方体有8个顶点。
正方体是长方体的特殊形式,当长方体的长、宽、高相等时即为正方体。
正方体的特征:
1、有3个面(只从一个角度看),每个面面积相等,形状完全相同;
2、有4个顶点(只从一个角度看);
3、有6条棱,(只从一个角度看)每条棱长度相等。长十宽