判断函数和数列是否收敛或者发散:
1、设数列{Xn},如果存在常数a,对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|0,存在一个正整数N,使得对于任意n>N,有|
-A|
}收敛于A(极限为A),即数列{
}为收敛数列。
定义方式与数列收敛类似。柯西收敛准则:关于函数f(x)在点x0处的收敛定义。对于任意实数b>0,存在c>0,对任意x1,x2满足0
判断函数和数列是否收敛或者发散:
1、设数列{Xn},如果存在常数a,对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|0,存在一个正整数N,使得对于任意n>N,有|
-A|
}收敛于A(极限为A),即数列{
}为收敛数列。
定义方式与数列收敛类似。柯西收敛准则:关于函数f(x)在点x0处的收敛定义。对于任意实数b>0,存在c>0,对任意x1,x2满足0