泰勒公式什么时候可以用(泰勒公式什么时候可以用证明题)

泰勒公式的使用条件是什么

泰勒公式的使用条件:实际应用中,泰勒公式需要截断,只取有限项,一个函数的有限项的泰勒级数叫做泰勒展开式。

泰勒展开式的重要性体现在以下五个方面:

1、幂级数的求导和积分可以逐项进行,因此求和函数相对比较容易。

2、一个解析函数可被延伸为一个定义在复平面上的一个开片上的解析函数,并使得复分析这种手法可行。

3、泰勒级数可以用来近似计算函数的值,并估计误差。

4、证明不等式。

5、求待定式的极限。

泰勒以微积分学中将函数展开成无穷级数的定理著称于世。这条定理大致可以叙述为:函数在一个点的邻域内的值可以用函数在该点的值及各阶导数值组成的无穷级数表示出来。然而,在半个世纪里,数学家们并没有认识到泰勒定理的重大价值。这一重大价值是后来由拉格朗日发现的,他把这一定理刻画为微积分的基本定理。泰勒定理的严格证明是在定理诞生一个世纪之后,由柯西给出的。

泰勒定理开创了有限差分理论,使任何单变量函数都可展成幂级数;同时亦使泰勒成了有限差分理论的奠基者。泰勒于书中还讨论了微积分对一系列物理问题之应用,其中以有关弦的横向振动之结果尤为重要。他透过求解方程导出了基本频率公式,开创了研究弦振问题之先河。此外,此书还包括了他于数学上之其他创造性工作,如论述常微分方程的奇异解,曲率问题之研究等。

参考资料来源:

百度百科-泰勒公式

泰勒公式如何使用?

看来你只是形式上背记了泰勒公式,

而没有真正理解这个公式。

f(x)=f(a)+f'(a)(x-a)+f''(a)/2!(x-a)²+...

实际上对定义域内的任意x、a都成立,

那么x当然可取0或1,而a也可以用x代替。

泰勒公式到底有什么用啊?我实在不懂

Taylor展开在物理学应用!物理学上的一切原理 定理 公式 都是用泰勒展开做近似得到的简谐振动对应的势能具有x^2的形式,并且能在数学上精确求解。为了处理一般的情况,物理学首先关注平衡状态,可以认为是“不动”的情况。为了达到“动”的效果,会给平衡态加上一个微扰,使物体振动。在这种情况下,势场往往是复杂的,因此振动的具体形式很难求解。这时,Taylor展开就开始发挥威力了!理论力学中的小振动理论告诉我们,在平衡态附近将势能做Taylor展开为x的幂级数形式,零次项可取为0,一次项由于平衡态对应的极大/极小值也为0,从二次项开始不为零。如果精确到二级近似,则势能的形式与简谐运动完全相同,因此很容易求解。这种处理方法在量子力学、固体物理中有着广泛应用。反思一下这么处理的原因:首先,x^2形式的势能对应于简谐运动,能精确求解;其次,Taylor级数有较好的近似,x^2之后的项在一定条件下可以忽略。这保证了解的精确性。

除了Taylor级数,经常用到的还有Fourier级数和Legendre多项式。原因也和上面提到的类似。有很多问题的数学模型是比较复杂的,这些复杂的问题往往很难甚至不可能求解,或是虽然能够求解,但是我们往往需要的是一个不那么精确但是效率很高的解法。而泰勒公式的强大之处就在于把一个复杂的函数近似成了一系列幂函数的简单线性叠加,于是就可以很方便地进行比较、估算规模、求导、积分、解微分方程等等*作。

比较典型的例子的话……牛顿近似求根法(或者叫牛顿迭代法)可以看作泰勒公式的一种应用,并且很容易理解。所有非线性关系都可以用泰勒展开,丢掉高阶保留线性项作为近似。计算机的计算过程用的就是泰勒级数展开式。泰勒公式给出了f(x)的另一种形式,而从某种意义上说逻辑就是用等号右边的形式代替左边的形式从而推理下去的。

数学上有一个习惯,就是把未知问题转化成一个已解决过的问题,然后就算解决了。泰勒级数形式的函数的行为就是一个计算机上的已解决得很好的问题。一旦把一个函数展开成泰勒级数的形式,它就成了一个已经解决过的问题,剩下的交给计算机就行了。理工科有一门课程叫做数值分析,这门课简直就是泰勒公式的应用。数值分析就是讲得各种数学式的求解,在计算机中,要求某一个问题的精确解是不可能的(因为计算机本质上只会逻辑运算),对于一个问题在不影响最后结果的情况下近似解是很可取的,泰勒公式就为这些计算提供了这样的方法,用简单式子逼近复杂式子,在误差范围内求出结果。在数学中,泰勒公式是一个用函数在某点的信息描述其附近取值的公式。如果函数足够光滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。泰勒公式还给出了这个多项式和实际的函数值之间的偏差。泰勒公式得名于英国数学家布鲁克·泰勒。

泰勒公式的初衷是用多项式来近似表示函数在某点周围的情况。比如说,指数函数ex 在x = 0 的附近可以用以下多项式来近似地表示:

其中n 被称为泰勒公式的阶。这个公式只对0附近的x 有用,x 离0 越远,这个公式就越不准确。实际函数值和多项式的偏差称为泰勒公式的余项。

对于一般的函数,多项式的系数的选择依赖于函数在一点的各阶导数值。这个想法的原由可以由微分的定义开始。微分是函数在一点附近的最佳线性近似:

,其中o(h) 是h 的高阶无穷小。

也就是说,或。

注意到f(x) 和 在a 处的零阶导数和一阶导数都相同。对足够光滑的函数,如果一个多项式在a 处的前n 次导数值都与函数在a 处的前n 次导数值重合,那么这个多项式应该能更好地近似描述函数在a 附近的情况。事实证明这是正确的,也就是泰勒公式:

一种常用的目的就是求近似值,计算机求近似值说不定就是用的这种方法,越好的计算机,求的n项越多,值就越接近真实值理论意义、实际计算意义都比较大。主要用于超越函数的近似计算(正弦、余弦、正切、π,e,指数函数,对数函数,γ函数,椭圆积分,概率分布函数,等等,都需要泰勒公式计进行数值计算。)理论上,可以通过泰勒展开,发现许多函数之间的关联。

其实不复杂。f(x)=σ(k=0,+∞)f^(k)(a)(x-a)^k/k!

从一个已知的点开始,计算其他点的函数值。依据的其实就是函数的光滑连续性。

【a,f(a)】,已知点,

f^(k)(a):已知点的k阶导数值;0阶为原函数。

(x-a)^k:x与a的差的k次方;

k!:1~k的整数的积。定义0!=1。

每一项是三个因子的积。

余项:r(n)前面n+1项,(最后项指数n)后面加上一项r(n),泰勒公式就精确相等。

rn=f^(n+1)(ξ)(x-a)^(n+1),ξ∈(a,x)或者(x,a)你把公式记住,多做类似题,在题目中会领悟

泰勒公式求极限有什么前提条件啊?什么样的情况可以用泰勒公式求极限

泰勒公式求极限的条件就是泰勒公式成立的条件

应用泰勒公式求极限的情况为,过当所求的极限表达式中含有三角函数,幂函数,指数函数,对数函数等式子相加减,或者这些函数的复合函数作为分子或分母时用其他的求极限的方法不好求事,此时我们应该想到用泰勒展开式求极限。

希望能够帮到你根据题目特点,一般有两成多个函数的和或差的形式,并且自变x在求极限时,ⅹ→0,这样可把x的高次方在x→0时,用0代替,每种方法都不是万能的,都有它们解决不了的问题,随着学习的深入,慢慢去体会。

原文链接:,转发请注明来源!