设U⊂ℝn,给定函数f:U→ℝ,p∈U,f在p点的第i偏导数定义为Dif(p)=limt→0(f(p+tei)-f(p))/t=(f∘c)'(0),其中c为过点p的方向为ei的线c(t)=p+tei。
在数学中,一个多变量的函数的偏导数,就是它关于其中一个变量的导数而保持其他变量恒定(相对于全导数,在其中所有变量都允许变化)。偏导数在向量分析和微分几何中是很有用的。
相应地函数z=f(x,y)有增量(称为对x的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。如果△z与△x之比当△x→0时的极限存在,那么此极限值称为函数z=f(x,y)在(x0,y0)处对x的偏导数,记作f'x(x0,y0)或函数z=f(x,y)在(x0,y0)处对x的偏导数,实际上就是把y固定在y0看成常数后,一元函数z=f(x,y0)在x0处的导数。
求偏导数的公式一阶偏导数的求解
隐函数的二阶偏导数公式隐函数的二阶偏导数公式:【F(X)/G(X)】'=【F'(X)G(X)-F(X)G'(X)】/【G(X)】^2。即令F(x,y,z)=f(x,y)-z,F'=∂f/∂x,F'=∂f/∂y,F'=-1,则∂z/∂x=-F'/F'=∂f/∂x,∂z/∂y=-F'/F'=∂f/∂y。
导数的公式有哪些?导数的公式有哪些?把这个结果代入lim⊿x→0⊿y/⊿x=lim⊿x→0a^x(a^⊿x-1)/⊿x后得到lim⊿x→0⊿y/⊿x=a^xlna。
可以知道,当a=e时有y=e^x y'=e^x。
4。y=logax
⊿y=loga(x+⊿x)-logax=loga(x+⊿x)/x=loga[(1+⊿x/x)^x]/x
⊿y/⊿x=loga[(1+⊿x/x)^(x/⊿x)]/x
因为当⊿x→0时,⊿x/x趋向于0而x/⊿x趋向于∞,所以lim⊿x→0loga(1+⊿x/x)^(x/⊿x)=logae,所以有
lim⊿x→0⊿y/⊿x=logae/x。
函数的偏导数神啊··那个就是一个记法··希腊字母读作ruangda,表示求函数的偏导数的意思
如ruangda(Y)/ruangda(X)即表示函数Y对X求导数··其余的全部看为常数
如ruangda(2X+3y)/ruangda(X),此时即把y看为常数,所求偏导为2.
**个α(Z)/α(x)中,先是复合函数求导,因(lnx)'=1/x,所以有个1/(2x+3y^2), 再乘以(2x+3y^2)对于x的导数,3y^2看为常数,所以只对2x求导为2...u对x 求偏导数得到:
∂u/∂x
=1/[x+√(x^2+y^2)] * ∂[x+√(x^2+y^2)]/∂x
=1/[x+√(x^2+y^2)] * [1 + x/√(x^2+y^2)]
=1/[x+√(x^2+y^2)] * [x+√(x^2+y^2)] /√(x^2+y^2)
=1/√(x^2+y^2)
同理u对y 求偏导数得到:
∂u/∂y
=1/[x+√(x^2+y^2)] * ∂[x+√(x^2+y^2)]/∂y
=1/[x+√(x^2+y^2)] * y/√(x^2+y^2)
=y /[(x^2+y^2) +x*√(x^2+y^2)]
二阶偏导数的公式详解是什么?u = abcxyz
∂u/∂x = abcyz
∂u/∂y = abcxz
∂u/∂z = abcxy
举个例子:设z=f(x+y2,3x-2y),f具有二阶连续偏导数,求az/ax,a2z/axay解:az/ax=f1+3f2a2z/axay=(f11*2y-2f12)+3(f21.2y-2f22)如果f1是z对**个中间变量u的偏导数az/au*au/ax,那么f1...设z=f(x+y2,3x-2y),f具有二阶连续偏导数,求az/ax,a2z/axay
扩展资料:
求二阶偏导数的方法:
当函数 z=f(x,y) 在 (x0,y0)的两个偏导数 f'x(x0,y0) 与 f'y(x0,y0)都存在时,我们称 f(x,y) 在 (x0,y0)处可导。如果函数 f(x,y) 在域 D 的每一点均可导,那么称函数 f(x,y) 在域 D 可导。
此时,对应于域 D 的每一点 (x,y) ,必有一个对 x (对 y )的偏导数,因而在域 D 确定了一个新的二元函数,称为 f(x,y) 对 x (对 y )的偏导函数。简称偏导数。
按偏导数的定义,将多元函数关于一个自变量求偏导数时,就将其余的自变量看成常数,此时他的求导方法与一元函数导数的求法是一样的。
设有二元函数 z=f(x,y) ,点(x0,y0)是其定义域D 内一点。把 y 固定在 y0而让 x 在 x0 有增量 △x ,相应地函数 z=f(x,y) 有增量(称为对 x 的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。
如果 △z 与 △x 之比当 △x→0 时的极限存在,那么此极限值称为函数 z=f(x,y) 在 (x0,y0)处对 x 的偏导数,记作 f'x(x0,y0)或函数 z=f(x,y) 在(x0,y0)处对 x 的偏导数。
把 y 固定在 y0看成常数后,一元函数z=f(x,y0)在 x0处的导数。同样,把 x 固定在 x0,让 y 有增量 △y ,如果极限存在那么此极限称为函数 z=(x,y) 在 (x0,y0)处对 y 的偏导数。记作f'y(x0,y0)。二阶偏导数就是对函数关于同一个自变量连续求两次导数,即d(dy/dx)/dx