1)重心分中线成两段,它们的长度比为2:1.
2)三条中线将三角形分成六个小块,六个小块面积相等,也就是说重心和三顶点的连线,将三角形的面积三等分.[证明: 用等底等高的三角形面积相等.高2倍底一倍的三角形面积等于高一倍底2倍的三角形面积]
2)材质均匀的三角形物体,他的重心就在几何重心上.也就是说,你可以从重心穿过一条线,手提这条线,而三角形物体保持水平.
三角形的五心一 定理
重心定理:三角形的三条中线交于一点,这点到顶点的
离是它到对边中点距离的2倍。该点叫做三角形的重心。
外心定理:三角形的三边的垂直平分线交于一点。该点叫做三角形的外心。
垂心定理:三角形的三条高交于一点。该点叫做三角形的垂心。
内心定理:三角形的三内角平分线交于一点。该点叫做三角形的内心。
旁心定理:三角形一内角平分线和另外两顶点处的外角平分线交于一点。该点叫做三角形的旁心。三角形有三个旁心。
三角形的重心、外心、垂心、内心、旁心称为三角形的五心。它们都是三角形的重要相关点。
上述的几个结论早在欧几里得时代均已被人发现,欧几里得除垂心定理外,均把它们作为重要定理收集在自己的《几何原本》里,但后来关于三角形这些特殊相关点的诸多研究及由此得出的许多著名结论表明,遗漏垂心定理不能不算是《几何原本》作者的一个疏忽。这些性质都是可以直接用的啊重心的性质及证明方法1、重心到顶点的距离与重心到对边中点的距离之比为2:1。三角形abc,e、f是ab,ac的中点。ec、fb交于g。过e作eh平行bf。ae=be推出ah=hf=1/2afaf=cf推出hf=1/2cf推出eg=1/2cg2、重心和三角形3个顶点组成的3个三角形面积相等。证明方法:在▲abc内,三边为a,b,c,点o是该三角形的重心,aoa1、bob1、coc1分别为a、b、c边上的中线根据重心性质知,oa1=1/3aa1,ob1=1/3bb1,oc1=1/3cc1过o,a分别作a边上高h1,h可知h1=1/3h 则,s(▲boc)=1/2×h1a=1/2×1/3ha=1/3s(▲abc);同理可证s(▲aoc)=1/3s(▲abc),s(▲aob)=1/3s(▲abc) 所以,s(▲boc)=s(▲aoc)=s(▲aob)3、重心到三角形3个顶点距离平方的和最小。 (等边三角形)证明方法:设三角形三个顶点为(x1,y1),(x2,y2),(x3,y3) 平面上任意一点为(x,y) 则该点到三顶点距离平方和为: (x1-x)^2+(y1-y)^2+(x2-x)^2+(y2-y)^2+(x3-x)^2+(y3-y)^2=3x^2-2x(x1+x2+x3)+3y^2-2y(y1+y2+y3)+x1^2+x2^2+x3^2+y1^2+y2^2+y3^2=3(x-1/3*(x1+x2+x3))^2+3(y-1/3(y1+y2+y3))^2+x1^2+x2^2+x3^2+y1^2+y2^2+y3^2-1/3(x1+x2+x3)^2-1/3(y1+y2+y3)^2显然当x=(x1+x2+x3)/3,y=(y1+y2+y3)/3(重心坐标)时上式取得最小值x1^2+x2^2+x3^2+y1^2+y2^2+y3^2-1/3(x1+x2+x3)^2-1/3(y1+y2+y3)^2最终得出结论。4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((x1+x2+x3)/3,(y1+y2+y3)/3);空间直角坐标系——横坐标:(x1+x2+x3)/3 纵坐标:(y1+y2+y3)/3 竖坐标:(z1+z2+z3)/35、三角形内到三边距离之积最大的点。
什么是三角形重心重心是三角形三边中线的交点,三线交一可用燕尾定理证明,十分简单。证明过程又是塞瓦定理的特例。
重心的几条性质:1、重心到顶点的距离与重心到对边中点的距离之比为2:1。2、重心和三角形3个顶点组成的3个三角形面积相等。3、重心到三角形3个顶点距离的平方和最小。4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3 竖坐标:(z1+z2+z3)/35、三角形内到三边距离之积最大的点。重 心三条中线定相交,交点位置真奇巧,交点命名为“重心”,重心性质要明了,重心分割中线段,数段之比听分晓;长短之比二比一,灵活运用掌握好.重心:在三角形中,三条中线交于一点,该点叫做这一三角形的重心。性质:三角形的重心把每一条中线分成两部分,这两部分之比为2:1,即重心到顶点的距离等于到对边中点的距离的二倍。
外心:三角形的三边的垂直平分线交于一点,该点叫做三角形的外心。也是三角形外接圆的圆心 。性质:三角形的外心到各顶点的距离相等。
垂心:在一个三角形中,三条边上的高(或其延长线)交于一点,该点叫做这一三角形的垂心。
内心:三角形的三内角平分线交于一点,该点叫做三角形的内心。也是三角形内切圆的圆心。性质:内心到两边的距离相等。
旁心:三角形一内角平分线和另外两顶点处的外角平分线交于一点,该点叫做三角形的旁心。三角形有三个旁心。旁心就是三角形旁切圆的圆心。重心是三角形三边中线的交点三条中线的交点